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Efficiency Loss

with the Kaplan-Meier Estimator

by

Myles Hollander, Frank Proschan, and James Sconing

ABSTRACT

We consider the proportional hazards model where the distribution G of the

censoring random variable is related to the distribution F of the lifetime ran-

dom variable via (I -G) = (I - F) . Nonparametric estimators of F are developed

for the case where 6 is unknown and the case where B is known. Of interest in

their own right, these estimators also enable us to study the robustness of the

Kaplan-Meier estimator (KME) in a nonparametric model for which it is not the

preferred estimator. Comparisons are based on asymptotic efficiencies and exact

mean square errors. le also compare the KME to the empirical survival function,

thereby providing, in a nonparametric setting, a measure of the loss in effi-

ciency due to the presence of censoring.
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1. INTRODUCTION

In the usual censorship model we wish to estimate a life distribution

F(x) =P(X5x) when lifelengths Xl, X2, ...9 Xn, independent and identically dis-

tributed (i.i.d.) from F are under censorship by Y, ""* Y n' i.i.d. from cen-

soring distribution G. Xi and Yi are mutually independent for i =1, ..., n and

F and G are continuous with densities f and g which are strictly positive on

[0, -). The actual observations consist of (Zi, 6i) , i=l, ..., n, where

Z i =min(Xi, Yi) and 6i = I(Xi s Yi) where I(A) is the indicator function of the

set A.

As an estimator of the survival function S(t) = 1- F(t), the Kaplan-Meier

(1958) estimator (RME) has received considerable attention. It is defined as

Kt) H c'M(i) I(Z zt), te(0, -), (1.1)
Z z in (n)

wherec *in (n- i)(n- i*l)"I, Z (l) ... 'Z(n) are the ordered Zi's, and 8(M is

the 6 corresponding to Z The product over an empty set is defined to be

zero. Some authors (cf. Wellner 1985) use a slightly different version of the

K4E defined by

SK(t) 11 c.(), tc (0, *). (1.2)
K z M t iZci) t

Equation (1.2) differs from (1.1) on [Zc, (n) if 8(n) =0. While (1.1) is

always zero on [Z n) , *), (1.2) is strictly positive there if 6(n) =0 and thus

in some samples S is not a true distribution function.
K

The KNE has been studied in great detail. Weak convergence has been studied

by Efron (1967), Breslow and Crowley (1974), Meier (1975), Gill (1983), and

Wellner (1985). Strong consistency was established by Peterson (1977) and
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Langberg, Proschan, and Quinzi (1980). Optimality properties were established

by Wellner (1982). Small-sample properties have been studied by Chen, Hollander,

and Langberg (1982), and Wellner (1985). Most of the properties developed in

these papers require only minimal assumptions (e.g., continuity of F and G).

The N E is also the generalized maximum likelihood estimator. These properties

along with the ease of computation, ease of interpretation, and easily estimated

asymptotic variance (Greenwood's formulaO have made the IME standard for esti-

mating-S(t).

Miller (1983) terms the KME "seductive" in that it is very tempting to use.

He studies the KME's efficiency loss when compared to the maximum likelihood

estimate (MLE) in parametric models. Emoto (1984) compares the KME with

parametric MLE's on the basis of mean square error. She considers both the case

when the parametric model is correctly specified and the case when it is mis-

specified. Not surprisingly the ?E performs poorly compared to MLE's in a

fully parametric setting. For example for F and G exponential, Miller (1983)

shows that the asymptotic efficiency of the KME with respect to the MLE tends to

zero as t + 0 and as t +.

We study the properties of the KME by considering the proportional hazards

model which lies between the parametric model and the fully nonparametric model.

The proportional hazards model is nonparametric in the sense that F is unknown,

but it possesses more structure than the fully nonparametric model assumed for

the KME. By considering the proportional hazards model we can see how well the

KME performs in a setting for which it is not optimal, thus investigating its

robustness. Furthermore, our efficiency results in conjunction with those of

Miller (1983) and Emoto (1984) allow us to determine the degree to which the

KM4E efficiency losses are due to (1) full parametrization of the distribution

of X and Y and (2) the presence of additional structure governing X and Y.

1 " . ,- , "" - - - ' - - . . . - - . . . " . ..
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The proportional hazards model is:

Definition 1.1. (X, Y) follows a proportional hazards model if for some

0' 0,

l -G(t) u (S(t))}, tc (0, *). (1.3)

Expression (1.3) is equivalent to

RG(t) - RF~t), t, eO (0 , (1.4)

where RF(t) = - logS(t), RG(t) = - log(l - G(t)), the cumulative hazard functions

of F and G respectively.

Proportional hazards has been used in censored models in the past. Efron

(1967) uses the special case of exponential random variables to compare effi-

ciencies for various two-sample tests. Koziol and Green (1976) derive a Cramer-

von Mises statistic for testing a goodness-of-fit hypothesis that F = F0 , 0

*. completely specified. Csorgg and Horvath (1984) improved upon the Koziol-Green

test in that Koziol and Green required that 0 be known whereas CsbrgU and Horvath

do not need this assumption. Chen, Hollander, and Langberg (1982) and Wellner

(1985) use proportional hazards to compute moments of the KNE. Chen, Hollander,

and Langberg use the form of the KME listed in (1.1) while Wellner uses (1.2).

In Section 2 we develop an estimator Sp (2.3) for estimating S in the pro-

portional hazards model when 0 is unknown. We compare §p with the KME in terms

of asymptotic efficiency, exact bias and exact mean square error. In Section 3

we advocate the maximum likelihood estimator Sp (3.1) of S in the case of pro-

portional hazards when 0 is known. One efficiency result is that the asymptotic

efficiency of the DIE with respect to the MILE is (6 +). Since (0+ 1) is

equal to P(X< Y), this is a readily interpretable measure of efficiency. In
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Section 4 the DE is compared with the empirical survival function. This com-

parison provides a measure of the efficiency loss due to censoring.

2. PROPORTIONAL HAZARDS, PROPORTIONALITY CONSTANT UNKNOWN

Assume that the proportional hazards model is known to hold. Then the lNE

is no longer the generalized maximum likelihood estimator. The extra information

that I G(p) ={S(p) 0 should be utilized. Let T =n "I  Tn 8 i*6. Then T is asymp-

totically normal with mean (8 1) = P(X < Y) and asymptotic variance:

AV(nl/2T) 6{(0 + 1)-2 (2.1)

Let H(t) be the survival distribution for Z. Then H(t) ={S(t))B 1 . Let

H n L(Z i >t), the usual empirical survival estimator for H(t). Then
i=l

1/2
A(t) =n Hn{in(t) -H(t)) converges weakly to a Gaussian process with mean 0 and

covariance structure, for s st, given by

Cov{A(s), A(t) {1 - H(s)}H(t) for 0 < s5 t <. (2.2)

Now our go&L is to estimate S(t) = {H(t))I / ( P1I . A natural choice is

Qp(t) =(An t) Tn for t (0, ). (2.3)

We use the following result of Allen (1963).

Theorem 2.1. The pair (X, Y), 0<P(X<Y)< I, follows the proportional

hazards model if and only if the random variables Z =min(X, Y) and 6= I(X!<Y)

are independent.

From Theorem 2.1-it follows that the random vectors (ZI . ..., Zn) and

(6i, "'" 6n) are independent under the proportional hazards model. Thus the
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statistics Tn and Hn(t) are independent. This, together with (2.1), (2.2) and

the fact that g(x, y) = xy has first partial derivatives which are continuous at

[{I- H(t)}H(t), B(0+1)"2 ] imply that Sp(t) converges weakly to a Gaussian pro-

cess (cf. Serfling pg. 124) with mean 0 and asymptotic variance given by, for

tC (0, -),

AV{n2S (t))

(0+l)-2 (H (t) f-S) (0 1) -,1(1 - H(t)) + O(B + 1)2}logH(t)12 (HCt) 2/(B+ Lj  (2.4)

or, equivalently,

1/--2 10+ 2 2AVr(nl/Sp(t) } =(O+ I):(S(t))I I[I " (S(t)) + ] + (Iogs(t))2{S(t) ) .  (2.5)

It is interesting to note that the asymptotic variance of S p may decrease

as 0 increases. This is not true of the asymptotic variance of the KNE. From

(2.5), we find

d 12
TO [AV(n/ 2S (t))] =

(2.6)

-2(0+ 1)-$3 {St))I''{S(t))2] - (P + W)2{S(t)}l -logS(t) + {S(t) lot S(t) 2 .

For 0 in a neighborhood of 1 and t close to 0, the right-hand side of (2.6) is

less than zero. It seems counterintuitive that an estimator should improve as

censoring increases. However, note that when 0 is close to 1, the distribution

of Y is almost the same as that of X. Consequently observing Y is almost as

informative as observing X. Thus this result is not surprising after all.

Note that the estimator in (2.3) junps at both the observed X's and the

observed Y's. Ebrahimi (1984) proposed an estimator in the proportional hazards

model which jumps only at the observed X's. Also note that the estimator in

.Y* ~ ~ ~ ~ ~ ~ k IS:A: - .. *



-6-

(2.3) drops to zero after Z(n) with one exception. In the case where Tn =0,

Sp(t)-1. In this pathological case our estimate for a is infinite.

§P is also strongly consistent. Note that H n(t) as. H(t) and Tn as* T by

the strong law of large numbers. Since g(x, y)= xy is a continuous function,

p(t) a4s {H(t)1I/CI+8 ) = S(t)[{l - G(t)1I/C8 +I {S(t))} /(0 )]

If the proportional hazards model holds then the term O(t) =

[{l- GQt)}I/(I) {s(t))}"0/ 0+ )] reduces to 1. If the proportional hazards model

does not hold then the term 0(t) is a contaminating factor. The error in the

estimator then depends on how far *(t) diverges from 1.

From (2.4) it is seen that the asymptotic variance can be estimated by

A l/2p 2 n- i 1-2T i {ogn -i 2 n -i 2T
AV~n S (t)1 =T(( -ED+T(l -T){log(-) I( C-_) IPn n n nl

for Zci ) :, t< Z(i+l) . This holds only for t< Note also that if O = 0, (2.4)

reduces to S(t){l- S(t)), the asymptotic variance of the usual empirical sur-

vival function.

To compare S with the KE, the asymptotic variance for the KE under thep

proportional hazards model must be computed. The estimator SK(t) is asymptoti-

cally normal with asymptotic variance (cf. Miller, 1981):

AWn1/2gM ) }=(S(t)) 2ft dF(u) (2.7)
S(s(u) }2{1 - G(u))}

If I-G=S then (2.7) reduces to

AV{n 1 1 2 SK(t)}= (+ 1) 1{S(t)) 2[{S(t)}-(a+I) - 1]. (2.8)

The ratio of (2.5) to (2.8) is then

al(t) df e(SK, Sp) = + ) , (8 l){logs(t)[(S(t) } (8+ I) - 111. (2.9)

, . .-- - . - . .-. . . . - . .. . . ... .
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Theorem 2.2. The function al(t) has the following properties:

i) limal(t) (+ 1).
t 0

I~t -).~ii) limal M = ( + I) - I

iii) al t (S+l) O<t<0

Proof: (i) Use L'Hospital's rule on the second term in (2.9) to obtain

lim 1 (t) = (8 + 1) + lim - 28(logS(t)}{S(t)}(8+ 1) =I(8+1)1
.).t40 t)O

(ii) Use L'Hospital's rule twice on the second term in (2.9) to obtain

lim = (8+1) + lim -28(8 + -( ) =(8+1 ) - I

t lmC t t()0

(iii) Note that the second term in (2.9) is always positive. I
V.

Table 1 gives some values for a1 (t) for X exponential with parameter 1 and

Y exponential with parameter 8. Note that the values for a 1(t) initially in-

crease and then decrease. The value of t for which this change occurs is given

by the solution to the equation (Sl )t= 2[1- exp -t( +1)1]. Table 1 also

suggests that al(t) decreases as 8 increases. 8 increasing is equivalent to

censoring increasing stochastically. Thus Table 1 suggests that the efficiency

of the DIE with respect to S decreases as censoring increases stochastically.

We have been unable to prove this.

While Table 1 gives values for X and Y exponential, these values hold for

any proportional hazards model. Consider the random variables R(X) and R(Y),

where R(.) is the cumulative hazard function. Then R(X) and R(Y) are exponential

random variables with parameters 1 and 8 respectively, To find the efficiency
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of the KME with respect to Sp (t) for this case, compute R(t) and use Table 1

with R(t) in place of t.

Finite sample comparisons can also be made using the method of Chen,

Hollander, and Langberg (1982). These authors compute bias and variance for the

,.E under the proportional hazards model. Wellner (1985) does the same using

(1.2) rather than (1.1). These methods can also be applied to Sp. This gives

E{Sp(t) =(2.10)

n n

(n . .)) n n-)ak/ns(t),(n-j)(S+l) [1-{S(t)}el]0 j . {(a+ 1)'1}J(B/(,+1),n -j .

j=o k=O K n

We use (2.10) to calculate bias and mean square error for Sp(t) when X and

* Y are exponential with parameters 1 and $ respectively. Table 2 gives numerical

values for bias and mean square error for 9K(t), SK(t), and 8p(t). The values

- for 9K and SK are obtained from Wellner (1985). From Table 2 we see that Sp is

biased high; in fact, its bias exceeds that of both KME's. This is perhaps due

, to the pathological case T= 0. The mean square error however is typically small-

er than that of the KME, particularly when = t = 2.0. The cases for which the

mean square error of the KME is smaller seem to correspond to the cases for which

the bias of S is large compared to that of the KME. The mean square error and

bias for 9p tend to increase in 8 and decrease in n. (An exception occurs in

* the bias values for = t = 2.0.) The values for the general proportional hazards

case can be obtained, as previously seen, by considering exponential variables

,* with R(t), the hazard rate, taking the place of t.

.' 2
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3. PROPORTIONAL HAZARDS, PROPORTIONALITY CONSTANT KNOWN

Suppose the proportional hazards model is known to hold with 8 known. In

this case an estimator analagous to S p is:

Sp(t) = (t)1y for tc (0, ). (3.1)

where y= (B+ 1) and H (t) is the empirical estimator for the Z.'s.
5?n I

It follows (Zehna, 1966) that Sp (t) is the maximum likelihood estimator for

S(t). Further, analagous to Section 2, if the model is correctly specified, SP(t)

is strongly consistent:

§,(t) a-,s. S(t) [{l - G(t) {S(8I S(t) I-81Bl S (t).

If the proportional hazards model does not hold or if a is misspecified, then

Sp(t) will not converge to S(t) and the error depends on how much the term

[{l -G(t)1 }/(8+) {S(t)) - 8/(8 I ) ] differs from I.

The estimator Sp converges weakly to a Gaussian process with mean S(t) and

asymptotic variance given by:

AV~n1/2gp(t))= (0+ W1) 2{H(t)(1- 0)/(8+l){l- H(t)} (3.2)

or, equivalently,

Av~nl1/2§sP(t) )  Pf +B 1)- 2{S(t)) 1-0 [1 - (S(t)l81] (3.3)

From (3.2) the asymptotic variance can be estimated by

A 1/2g -2 n-i ' 1-8.

for Z !t<Z(il) , i= 1, ... , n- 1. Again the estimator jumps at both failure
M(i)i~~

times and censoring times. To compare S with the KE, compute the ratio of
P
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(3.3) to (2.8). This yields:

def

a 2 (t) = e(SK Sp)= (0+l) independent of t.

Note that e(SK1 Sp) decreases as R increases. Recall from Theorem 2.2 that

(0 1)-1 is also the value of al1(t) at both extremes of t. Note that (0+1)-1 =

P(X <Y) and this represents the proportion of values for which a failure occurs.

Recall that Sp jumps at both the observed failure times and the observed cen-

soring times while SK jumps only at the observed failure times, n. P(X<Y) in

expectation.

As in Section 2, exact finite sample results can be obtained. Analogous

calculations yield

n n j ( n-() ($1 )

E{S(t)}1 = I C?)( n. {S(t)}(n) (8 l)[l - IS(t)pl]j" (3.4)P j=O

Bias and mean square error are calculated from (3.4). Table 3 gives the

values for the case X and Y exponential with parameters 1 and 8 respectively.

The biases for the 8 known case are higher than for the 8 unknown case. The

mean square errors are everywhere smaller, sometimes half as small as those for

which 8 is unknown. Note that SK(t) has the smallest mean square error whenK~

t =1.0 and 8= 2.0. However when t= 2.0 and 8 = 2.0, SK(t) does substantially

worse than each of the other competitors with mean square error six times as

great as that of S P. The mean square error and bias of P decrease with n and

increase with 8.

"" ,'T
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4. LOSS IN EFFICIENCY DUE TO CENSORING

When there is no censoring, the K4L reduces to the empirical survival func-

tion, the latter being the estimator of choice in the fully nonparametric non-

censored model. Thus by comparing the KME to the empirical survival function,

we obtain, in a nonparametric context, a measure of efficiency loss due to the

presence of censoring.

From (2.7) the asymptotic variance of SECt) is given by

. . A V~ l / 2 g E
AV{n 1 E(t))= s(t){1 -s(t)). (4.1)

The ratio of (2.7) to (4.1) is then

def I t dF(u)a 3 = e(9 K S(t) - (t) 0 2(4.2)
3t e(, ') -St "l O {S(u)) {l-G(u))

a- (t) has the following interpretation. Roughly speaking, K requires

n- e(9E, ) cbservations in the censored model to do as well as SE does with n

observations from the non-censored model.

Theorem 4.1.

(i) lima 3(t) = 1.

(ii) lima 3(t) =.
i::':t -).0

(iii) a3 (t) is increasing in t.

(iv) a3 (t) increases as censoring increases stochastically.

Proof: (i) We have

Slimet(t)= limS(t){F(t)} l t dF(u) = lim{F(t))-1 t dF(u)

t.O t 3O t00S(u)1 2 {l-G(u)) t-O 0°(S(u)) 2{1-G(u)"

. .
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Using L'Hospital's rule,

lima 3(t)= u 2(t) = lim[{l-G(t)I{S(t) )2 1- l.

t0 t40{1-G(t)1{S(t)2 f(t) t-i-n

(ii) Let E>0 be given and choose t1 such that 1-G(t1) <c for t>t 1 . Choose

t2 such that S(tl) - S(t2) > (1/2)S(tI). Then

ft2 dF~u)

lira 3 (t) _ S (t 2 ) {F (t 2 ) }t (u)2

t 2 2 0 IS (u)}12{ l- G(u)1

S(t ) > (2/) S (t2 f- t2 {(u) I -dS(u)2 2t 2 {I {-G(u)2

{2S(t2)/E}[{S(u)}-lI t1 2 (2S(t2)/c}[{S(t2)W1 {S(tl)-]k>e

2 -1(t)4{i) -2

S(t)f(t)(F(t){1- G(t){S(t) }21-1 + t 0S (u2 ) [f (t)F(t) 2

F{S(u)2 1-G(u) I

f(t){F(t))}-1[IS(t) {1 - G(t) }]-I.- {F(t)) }1/ {Su }2{ G(u)}

0{S(u)j 1 l- G(u)}

which is positive if

{F(t)}-1 1 -G(t) IS(t)f t }2(u) (4.3)
0 S(u)} (1 -G(u)1I

The right-hand side of (4.3) is less than

(F(t)) }I S(t) it -{S(u) 1-'2dS(u) = {F(t)) 1-Is(t) [um I {0 I - I.

0 0

(iv) Note that if censoring increases stochastically, 1- G(t) decreases for

every value of t. This implies that a 3(t) is increasing. j{
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These results indicate that when t is small, censoring is not very critical,

but as t increases the censoring has more influence. Consequently for function-

als of S(t) which involve large values of t, the KME must be used with caution.

Acknowledgement: We gratefully acknowledge Edsel Pena for checking the effi-

ciency expressions and the bias and mean square error calculations.
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Table 1. Asymptotic Efficiency of S with Respect

to S under Proportional Hazards with 8 Unknown.

.1 .2 1/3 .5 1.0 2.0

.1 .9186 .8522 .7812 .7130 .5903 .5048

.2 .9270 .8687 .8082 .7524 .6627 .6253

.3 .9344 .8832 .8313 .7854 .7189 .7033

" .4 .9409 .8957 .8509 .8126 .7611 .7471

.5 .9466 .9063 .8672 .8345 .7910 .7642

.6 .9515 .9153 .8806 .8516 .8103 .7611

.7 .9556 .9227 .8911 .8645 .8208 .7436

.8 .9590 .9286 .8993 .8736 .8238 .7164

.9 .9618 .9333 .9052 .8793 .8208 .6835

1.0 .9640 .9368 .9091 .8821 .8130 .6477

1.1 .9656 .9392 .9113 .8824 .8016 .6114

1.2 .9668 .9406 .9119 .8805 .7873 .5760

1.3 .9676 .9412 .9112 .8769 .7712 .5428

1.4 .9679 .9411 .9093 .8718 .7538 .5124

1.5 .9679 .9403 .9065 .8655 .7358 .4850

1.6 .9676 .9389 .9028 .8582 .7176 .4608

1.7 .9670 .9370 .8985 .8502 .6996 .4397

1.8 .9662 .9347 .8937 .8417 .6820 .4215

1.9 .9651 .9320 .8884 .8329 .6652 .4061

2.0 .9639 .9291 .8828 .8239 .6492 .3930

'- , -- r * - v



17

an tn inu- ( - r- P, C4U00 Va 0 V- 4Ml coo4u (A-mn4'e-C40 In

00000 00000o 00000 00000 00000

0

r.)

.0 OLn 00-4 e 4 0 U C.q Cbt- 0 Mm-4C cn - Chtn m- In 00%D O O

0000C a0 0 Q00>0 0C>000 0 0000 00 000

U7

Cu

-

9: (U) 00 m -4O as -40)'O'0 4Q VL Ln 00tfl % ~C4'J'DOW'0 0OO0%00 %
0 CJ -4 -4 0 tf q1 -4 q % tn )('4 -4. 4 r-4 -4,-4 % m C4 " -

000 00 000 0 000 0 0000Q O )0

0

0

0 4.)

10

o u 0000a0 00000 0000 Q0 040000 00000-4 C

0

In 0_
4.)

ICA

* 0 00000 C -40000 CIt-40aa0 l OCDO C) M 00 -n-4
0CD0 00 0 0 00C0 e'Jo00o -40 a000 tNeqa 0

U) 0 a0000 Q00 00 00000 0000 0 C D0 000 C
Q 0000 0 0 0 00 0000 0 00 0aD0

M Cu *,- . .. . . . . . . . . .

4J)

0 r
V * -40000 N.-00 0t' 1 4 'cr M 40 O - t

co 000 0 Q40 000 LO'\0 40C 0 UL 00 V-1CD CD'J-4\
> u) 00Qa00 00000 eJ040 0 a000 a0 M' -4000

Cd 00 a0Q 00000 a00 00 0 000CD0 000)a D0
4.) .,f . . . . . . . . . . . . . . . . . . . .

0

ca

-4 -4



SU~~ S r~~. ,, u,~~ S -. -W -,,- E'u f

18

4J

.

0000 000I tM 00 00000eeqm -40000D
..................................................................... 4t.............

4.'

0 00 -~O.0-0c' n -C C 0 * %D OOfr4 I- M 'JCI0 Me
040000 0000 0 0a0 C D00 00000a C C.* . . . . . . .

4.'

ch -h40 0a1t 00000 00 q0 00 C4 -4 ,-4.C4

4'

tn J. V %.0 -D4000 m-~~N- C4onD tODC4 '.J4~nIc
U) 0000 0000 00000N4- - ,%oL n t C -4 -4.-4 -4

m ~ ~ ~ .~ D( D0C )a 0 Q 0( -

* *fca

CD U) r4- 0 00 0000 D C>C D0 CD ri -4 -4 -4 -

-
10

4.J

0 0 0 0-10L d 4r4C

% 4,."I .

Cd0 nC>L 0 C L C n n n > D'.04nC



19

0 m Lnu0 q*t- o mLn r0 Lflt C14 LflI~.-4 M%D

-1 U)K oo. n4t) -4-400 C44 4 4 CIA ('4 4-

10 0

.4. 4.)

M t -- to o o o o k n e 'C 4 -4 .-44 t ~ 0 0 % D % u I T r 4 " 4 oA

"0 r -4 -4 -D00 0000 0 0aCD000D0 C) - 4.-4 -4 -4
1-$4 tn . . . . . ... ..
Cd Cd
N ,
Cd g

Cd

0

$4 t~ 1-4e4'J' -4 c'JC4J1 m 14 -4 C1 r4 ) .-- 4 4CC *4 t-
0

0
$4

0.0 11) 0Q

4.) 4

0
$4
$4

CU

tv

m " O rNI)- % a -)400 %0 J) 0)N) rC U)n nLf-4 o r C 0tn L).-4 U
to tC --I) - 0 00 -4 -4 00a0 tn -4 -4 00 C14 -4 -4 0C -C "-4 -4

0 CD- 0 0 0 0000 C C 0 0000Q 0 aCD0 000 0C)00C0

L13

CU

CA
C--

4.4 41)

U) )CJ OOLt)1)n 1*~1) C -4~ )-~ U 00 0 )C'Jq1- r4 i)C'JL

0 u-. 000 -40 000 C:VC4 -4 -4 0 -4 -4 000 L1t')(C4 1 -4
00000 C 0 0000 00000 00000 0 D0 00
0 . . . . . . . . . . . . . . . . . . . .

CU CU

4.) I
u
CUx

-- 4

0i 0 1i



,T'":ITY CLASSIFICATION OF TIS PAGE
REPORT DOCtMlENTATION, PAGE

. SFPURT M,'ER Z. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG ,.RMUMER
FSU M707
AFOSR 85-181 I

- TITLE (and subtitle) 5. TYPEhF REPORT & PERIOD COVERE[7
Technical

Efficiency Loss with the Kaplan-Meier Estimator 6. PERFORW"LING ORG. REPORT NUMBER

* AUTHOR(s) 8. CONTRACT OR GRANT 00IUJBER(s)

Myles Hollander, Frank Proschan, & James Sconing AFOSR F49620-85-C-0007
. PERFORMING ORGANIZATION MUriE AND ADORESS 11). PROGRAOi ELE'IEOT, PROJECT, TASK

• Department of Statistics AREA, & W1ORK UNIT NUMBERS
Florida State University
Tallahassee, Florida 32306-3033 \\Q V a5-' (5

1. COMTROLLING OFFICE vNAiE ANtl) ADDRESS 12. REPORT DATE
The U.S. Air Force August, 1985
Air Force Office of Scientific Research 13. I!IJIER OF PAGES
Bolling Air Force Base, DC 20332 19

4. iIOI!ITORING AGENCY NArIE & ADORESS (if 15. SECURITY CLASS. (of this report,
different from Controlling Office) __________________________________

15a. DECLASSIF ICATION/DOOGRADING

SCHEDULE

j. OISTRIBUTION STATE"IETff (of this report)

distribution unlimited

7. DISTRIBUTIOi STATEIEFIT (of the abstract entered in Rlock 20, if different from report;

!. SUPPLEI'IEI.TARY NOTES

. KEY ,1ORDS

Censored model, Kaplan-Meier estimator, Proportional I;azards

, ' ABSTRACT (Continue on reverse side if necessary and identify by block number)

-We consider the proportional hazards model where the distribution G of the

censoring random variable is related to the distribution F of the lifetime random

variable via (I -G) =(I- F)"-. Nonparametric estimators of F are developed for the

case whereBi~ s unknown and the case where is known. Of interest in their own

right, these estimators also enable us to study the robustness of the Kaplan-1leier

estimator (KE) in a nonparametric model for which it is not the preferred esti-

mator. Comparisons are based on asymptotic efficiencies and exact mean square

errors. We also compare the KME to the empirical survival function, thereby pro-

viding, in a nonparametric setting, a measure of the loss in efficiency due to the

presence of censoring.

L.9



FILMED

Pp

D1-86
.

- DTIC
I p~ - -


